PII: S0040-4039(96)01204-X ## Novel Syntheses of Camptothecin Alkaloids, Part I. Intramolecular [4+2] Cycloadditions of N-Arylimidates and 4H-3,1-benzoxazin-4-ones as 2-Aza-1,3-Dienes Joseph M.D. Fortunak,* Antonietta R. Mastrocola, Mark Mellinger, Nicolas J. Sisti, Jeffery L. Wood and Zhi-Ping Zhuang > Chemical Process R&D, DuPont Merck Pharmaceutical Co., Chambers Works, PRF(S1) Deepwater, NJ 08023-0999 Department of Synthetic Chemistry, SmithKline Beecham Corporation, 709 Swedeland Road, King of Prussia, PA 19406-0939 Abstract: The first reported intramolecular [4+2] cycloadditions of both N-arylimidates and 4H-3,1-benzoxazin-4-ones acting as 2-aza-1,3-dienes are described. Reaction with unactivated alkynes leads to pyrrolo[3,4-b]quinolines which constitute the ABC ring system of camptothecins. Copyright © 1996 Elsevier Science Ltd - 1 $R_1 R_4 = H$ - 2 R₁ = C₂H₅, R₃ = OCO-(4-piperidinyl piperidine) - 3 R₃-R₄ = ethylenedioxy R₁ = CH₂(N-Me-piperazine) - $4 R_2 = NH_2$ - 5 as shown Camptothecin Irinotecan(Daiichi/Yakult) GI-147211C(Glaxo) 9-aminocamptothecin(NCI) Topotecan(SmithKline Beecham) Camptothecin¹ is a selective inhibitor of mammalian topoisomerase I^{2,3} originally isolated from the Chinese tree *Camptotheca acuminata*. A number of camptothecin analogues (2-5) are being developed as anticancer agents.^{4,5} Several intriguing total syntheses of camptothecin have been published⁶ of which perhaps the most commercially viable originate from the Comins group.⁷ With the recent FDA marketing approval of topotecan (5)^{4a} we wish to report some of our efforts from the SmithKline Beecham process chemistry group in this area. Scheme 1 indicates our retrosynthetic strategy used to synthesize camptothecin and various of its analogues, including topotecan. We assembled the pyrrolo[3,4-b]quinoline ring system (ABC rings) of camptothecins by the previously unknown, intramolecular [4+2] cycloaddition of unactivated alkynes with either N-arylimidates or 4H-3,1-benzoxazin-4-ones (Schemes 2 and 3). ABCD ring precursors of camptothecins were therefore prepared from the appropriate aniline, a propargyl unit, and various 2-pyridone-6-carboxylic acids. Scheme 2 illustrates our initial success. The 2-(1H)-pyridone 6^{6a} was converted in three steps to 7 in 51% overall yield. Stirring of 7 with three equivalents of trimethyloxonium fluoroborate in methylene chloride solution at 20 °C gave the corresponding O-methylimidate (4:1 mixture of stereoisomers, major isomer not determined) indicated by ¹H NMR spectroscopy. The desired, intramolecular [4+2] cycloaddition and subsequent elimination of methanol did occur, albeit slowly, under these conditions. Replacement of the solvent with acetonitrile and refluxing for six hours gave a single major product (analytical TLC/HPLC). The product was isolated by concentration of the solvent and crystallization from hot methanol to give the tetracyclic quinoline 8 in 82% yield from 7.8 This amounts to a formal total synthesis of (±) 10-methoxycamptothecin.6b,c Scheme 2 Reagents and Conditions: a) cyanoacetamide, K₂CO₃, acetone, reflux; 82% b) propargyl bromide, DMF, K₂CO₃; 65% c) NaOH, aq. DMF; 95% d) *p*-anisidine, 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide:HOBT, CH₂Cl₂; 83% e) CH₂Cl₂, Me₃OBF₄, RT °; followed by CH₃CN, reflux; 82% The formation of 8 is effectively the intramolecular [4+2] cycloaddition of an "electron-neutral" alkyne with a 2-aza-1,3-diene, with the aryl ring serving as a 2π component of the diene. Although the intramolecular cycloaddition of 2-azadienes has been reported and, in special circumstances, N-arylimines and N-arylimmonium salts have been condensed in a [4+2] fashion with electron-rich olefins $^{10-12}$ we believe this to be the first report of N-arylimidates serving as 4π components in a Diels-Alder reaction. 13 In some cases cycloaddition through the intermediate imidate gave poor yields. This was dependent upon the substitution pattern on the aromatic ring and the stability of the imidate towards competitive rearrangement ¹³ and/or decomposition. Substrates with at least one electron-donating substituent (e.g., methoxy) on the aromatic ring gave good yields of product. When yields are poor, a preferred alternative is cycloaddition through the analogous 4H-3,1-benzoxazin-4-one. ¹⁴ Benzoxazinone 9 in Scheme 3 was derived from 6 by ester hydrolysis followed by coupling with anthranilic acid (CDI in THF, 88% yield after recrystallization). Ring closure to form the benzoxazinone in refluxing acetic anhydride ¹⁵ also resulted in intramolecular cycloaddition and loss of carbon dioxide to give the corresponding quinoline. Tetracycle 10 was obtained in 75% yield (cf. Scheme 3) from 9 in this manner. The conversion of 10 to racemic camptothecin is known. 6b,c The only analogous reaction of benzoxazinones is their stepwise [4+2] addition with ynamines, giving rise to quinolines with narrowly restricted substitution patterns. 16 ## Scheme 3 We have not extensively examined the reactions of N-arylimidates or 4H-3,1-benzoxazin-4-ones with a range of dienophiles. A few additional intramolecular cycloadditions are listed in the Table below. Our current results are consistent with the products being formed through a [4+2] cycloaddition, although the possibility of either reaction occurring through a stepwise mechanism has not been rigorously disproven. We have used this strategy to carry out total syntheses of compounds 1-3 and 5. A concise total synthesis of camptothecin analogues, including (S)-topotecan (5) is described in the communication immediately following. ¹⁷ **TABLE** | | Substrate | Method (yield) | Product | |------------------------|---------------------------|-----------------------|-------------------------| | MeO | | _{,O} A (65%) | MeO N | | НО | , | B (74%)
O | HO CH ₃ | | $\binom{\circ}{\circ}$ | AcO O N N CH ₃ | A (48%)
.O
CN | OAC OAC CH ₃ | Method A: 3 eq. trimethyloxonium tetrafluoroborate; acetonitrile, 20 °C followed by reflux Method B: reflux in acetic anhydride ## References and Notes - Wall, M.E.; Wani, M.C.; Cook, C.E.; Palmer, K.H.; McPhail, A.T.; Sim, G.A. J.Am. Chem. Soc. 1966, 88, 3888. - 2. Hsiang, Y.-H.; Hertzberg, R.; Hecht, S.; Liu, L.F. J. Biol. Chem. 1985, 260, 14873. - Giovanella, B.C.; Stehlin, J.S.; Wall, M.E.; Wani, M.C.; Nicholas, A.W.; Liu, L.F.; Silber, R. Potmesil, M. Science 1989, 246, 1046. - 4. a) Kingsbury, W.D.; et. al. J. Med. Chem. 1991, 34, 98. - b) Sawada, S.; et. al. Chem. Pharm. Bull. 1991, 39, 1446. - c) Miyasaka, T.; Sawada, S.; Nokata, K.; Mutai, M. U.S. Patent 4 545 880, 1985. - d) Luzzio, M.J.; et. al. Proc. Am Assoc. Cancer Res. 1993, 34, 332... - 5. Irinotecan (2) is a marketed anticancer agent in Japan and is currently in Clinical development in the United States sponsored by the Upjohn/Pharmacia Corp. - 6. a) Wani, M.C.; et. al. J. Med. Chem. 1980, 23, 554. - b) Eckert, H. Angew. Chem. Int'l. Ed. Engl. 1981, 20, 208. - c) Pan, P.C.; et. al. Acta Chim. Sinica 1975, 33, 71. - d) Cia, J.C.; Hutchinson, C.R. Chem. Heterocycl. Compd. 1983, 25, 753. - e) Cia, J.C.; Hutchinson, C.R. The Alkaloids: Chemistry and Pharmacology, Brossi, A., Ed.; Academic Press: New York, 1983; Vol. 21, p. 101. - f) Shen, W.; Coburn, C.A.; Bornmann, W.G.; Danishefsky, S.J. J. Org. Chem. 1993, 58, 611. - g) Curran, D.P.; Bo, S.-B.; Josien, H. Angew. Chem. Int'l. Ed. Engl. 1995, 54, 2683; Curran, D.P.; Liu, H. J. Am. Chem. Soc., 1992, 114, 5863; Curran, D.P.; Ko, S.-B. J. Org. Chem., 1994, 59, 6139. - h) Jew, S.-s.; Ok, K.-d.; Kim, H.-j.; Kim, M.G.; Kim, J.M.; Hah, J.M.; Cho, Y.-s. *Tetrahedron: Asymmetry* **1995**, *6*, 1245. - i) Fang, F.G.; Xie, S.; Lowery, M.W. J. Org. Chem., 1994, 59, 6142. - 7. a) Comins, D.L.; Hong, H.; Jianhua, G. Tetrahedron Lett. 1994, 35 5331. - b) Comins, D.L.; Hong, H.; Saha, J.K.; Jianhua, G. J. Org. Chem. 1994, 59, 5120. - c) Comins, D.L.; Saha, J.K. Tetrahedron Lett. 1995, 36, 7995. - d) Comins, D.L.; Baevsky, M.F.; Hong, H. J. Am. Chem. Soc. 1992, 114, 10971. - 8. Compounds were identified by ¹H NMR, IR and Mass spectral analysis. Purity was determined by HPLC. New compounds were additionally characterized by ¹³C NMR, exact mass determination and/or elemental analysis. Yields are given after purification. - 9. Barluenga, J.; et. al. Synlett. 1990, 129. - 10. Grieco, P.A.; Bahsas, A.; Tetrahedron Lett. 1988, 29, 5855. - 11. Mellor, J.M.; Merriman, G.D.; Mitchell, P.L.; Tetrahedron 1995, 51, 12383. - For a review of applicable references see Boger, D.L.; Weinreb, S.M. Hetero Diels-Alder Methodology in Organic Synthesis, Wasserman, H., Ed.; Academic Press: San Diego, 1987; Vol. 47, pp. 255-260, 278-299. - 13. Since formation of the imidate produces one mole equivalent of fluoroboric acid this reaction is likely an inverse electron-demand [4+2] cycloaddition of the protonated azadiene with the "electron-rich" alkyne. The reaction occurs, although more slowly, through the neutral imidate. Photolysis, radical traps or initiators have no significant effect on the reaction. The benzoxazinones react uniformly in a [4+2] fashion whereas the p-nitro-N-arylimidate reacts as below, giving the desired cycloaddition in poor yield (15-20%; compare with ref. 10). Lewis acid catalyzed reaction of various imidates or reaction through the O-silyl-imidates also gives primarily the reaction pathway indicated below. - 14. Heller, G.; Fiesselman, G. Justus Liebig's Ann. Chem. 1902, 324, 134. - 15. Fenton, G.; Newton, C.G.; et. al. J. Med. Chem. 1989, 32, 265. - a) Hofle, G.; Hollitzer, O.; Steglich, W. Angew. Chem. Int'l. Ed. Engl. 1972, 11, 720. b) Steglich, W.; Hollitzer, O. Angew. Chem. Int'l. Ed. Engl. 1973, 12, 495. - A preliminary, partial disclosure of this work was first presented at the University of New Orleans, February 21, 1992.